EAUX PLUVIALES : CALCUL DE LA RETENTION - REGION III - PERIODE DE RETOUR 2 ANS

N° affaire/intitulé

20-002 BRIGNOLES BATIMENT A

Préambule : CALCUL DU COEFFICIENT DE RUISSELLEMENT

Tableau récapitulatif donnant par type d'occupation de sol les coefficients de ruissellement

ETAT EXISTANT

Nature de la surface	Ci	Surface A (ha)
Espaces verts, parcelle vierge	0,1	17,0000
Pavés sur lit de sable, voiries empierrées	0,85	
Toiture bâtiments	0,9	
Voiries, dalles béton, trottoirs	0,85	
Surface totale site existant		17,0000

Coefficient de ruissellement de l'état existant

Ce = 0,	100
---------	-----

Pente moyen du terrain naturel (en %):

Pe =	5

ETAT FUTUR

Nature de la surface	Ci	Surface A (ha)
Espaces verts, parcelle vierge	0,1	7,3100
Pavés sur lit de sable, voiries empierrées	0,85	0,0000
Toiture bâtiments	0,9	5,6100
Voiries, dalles béton, trottoirs 0,85		4,0800
Surface totale du site futur	17,0000	

Coefficient de ruissellement de l'état futur

Cf =	0.544

Pente moyen du terrain état futur (en %) :

Pf =	1

METHODES DE CALCUL

1) Calcul des débits à l'état exitant : Méthode rationnelle

Qf = Ce x I x A / 360

Débit de crue décennale (m3/s) =	Qf =	0,19064
Coefficient de ruissellement moyen à l'état existant =	Ce =	0,1000
Surface du terrain (ha) =	A =	17,0000
Intensité de la pluie (mm / heure) =	I =	40,3709

Calcul de l'intensité de la pluie:

|--|--|

Intensité de la pluie (mm / heure) =	I =	40,3709
Coefficient de Montana :	a =	5,101
	b =	-0,635
Temps de concentration (mn) :	Tc =	24,2893

Calcul de temps de concentration: formule de DESBORDES

Tc = 0,90 x A^0,35 x Ce^-0,35 x P^-0,5		
-		
Temps de concentration (mn) =	Tc =	24,2893
Surface de la parcelle (ha) =	A =	17,0000
Coefficient de ruissellement moyen à l'état existant =	Ce =	0,1000

A partir de ces données, nous avons déterminé les pluies pour différentes périodes de

retour selon des lois de Montana :

 $i(t) = at^{-b}$

avec : i intensité en mm/h ;
a et b coefficients de Montana.

Nous avons obtenu les résultats suivants :

Période de retour	a	b
2 ans	5,101	0,635
5 ans	7,615	0,651
10 ans	9,206	0,657
25 ans	11,124	0,662
50 ans	12,552	0,665
100 ans	13,971	0,668

Tech 83 - A519ADE3

Pente moyenne du terrain naturel de la parcelle (m/m) = P = 0,0500

2) Calcul des débits après aménagement: Méthode de Cacqot

Calcul du débit de pointe décennal brut:

Qb10 = 1,296 x I ^ 0,21 x Cf ^ 1,14 x A ^ 0,83

Pente moyenne du terrtain aménagé de la parcelle = I = 0,0100

ou pente du collecteur (m / m)

Surface de la parcelle (ha) = A = 17,0000

Débit de pointe décennal brut (m3/s) = Qb10 = 2,1583

Coefficient de ruissellement moyen à l'état futur = Cf = 0,5440

NB : domaine de validité de la méthode de Caquot

0,2 < Cf < 1

0.002 < I < 0.05

Calcul du débit corrigé (correction du débit brut) :

Qc10 = m x Qb10

débit de pointe décennal corrigé (m3/s) = Qc10 = 1,9238

débit brut obtenu précedement (m3/s) = Qb10 = 2,1583

 $m = (M/2)^{-0,5966}$

où M = (L) / Racine carré de A

NB: si M < 0,80 on prendra M = 0,80 pour le calcul de m

longueur hydraulique , le plus long parcours de l'eau (m) = L = 1 000,0000

Surface de la parcelle (m²) = A = 170 000,0000

M = 2,4254 m = 0,8913

3) Calcul des volumes de rétention: méthodes des volumes

On recalcule l'intensité de la pluie et le temps de concentration avec le coefficient et la pente de la parcelle à l'état aménagé.

Calcul de l'intensité de la pluie

	I = a x Tc^b	
Intensité de la pluie (mm / mn) =	I =	0,5881
Temps de concentration (mn) =	Tc =	30,0220
a et b les coefficients de Montana =	a =	5,101
	b =	-0.635

Calcul de temps de concentration: formule de DESBORDES

Tc = 0,90 x A^0,35 x Cf^-0,35 x P^-0,5					
Temps de concentration (mn) =	Tc =	30,0220			
Surface de la parcelle (ha) =	A =	17,0000			
Coefficient de ruissellement moyen à l'état futur =	Cf =	0,5440			
Pente moyenne du terrain aménagé de la parcelle (m/m) =	P =	0,0100			

Détermination de la hauteur apportée:

Soit ha la hauteur apportée par la pluie considérée selon la formule suivante:

ha = I x Tc

Hauteur apportée (mm) = ha = 17,6572

Détermination du volume apporté par la pluie considérée:

	Vapport = (ha x Aa) / 1000		
Surface acti	ve de la parcelle (m²) =	Aa =	92 480,0000
Surfa	ce de la parcelle (ha) =	A =	17,0000
Coefficient de ruisselemen	t moyen à l'état futur =	Cf =	0,5440

Volume apportée par la pluie considérée (m3) =	Vapport =	1 632,9344
--	-----------	------------

Détermination du volume évacué par le débit de fuite:

Vf = (Tc x 60) x Qf

Temps de concentration (mn) = Tc = 30,0220Débit de fuite calculé à l'état existant (m3/s) = Qf = 0,1906

calculé par la méthode rationnelle